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Abstract

Pursuing the aims of geometric quantum mechanics, it is shown in a geometrical fashion that, at
least in finite dimension, Schrödinger dynamics enjoys classical complete integrability, and several
consequences therefrom are deduced, including a Hannay-type reinterpretation of Berry’s phase
and a geometric description of some aspects of the quantum measurement problem.
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1. Introduction

In this note we wish to point out several classical features stemming from the very heart
of the standard formalism of quantum mechanics. This is, in part, well known due to the
work among others, of[4,10–16,25–27,40].

The basic idea of the geometric approach to quantum mechanics roughly consists in
regarding it as classical mechanics on the projective Hilbert space associated to the quan-
tum system, considered as given a priori, its dynamics being governed by a special class
of Hamiltonians, namely those arising as mean values of self-adjoint operators
(seeSection 2).
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Our starting point is that, given such a Hamiltonian (confining ourselves to the finite
dimensional non-degenerate case), there is a natural toral action leaving it invariant and
foliating the projective space into Lagrangian (or isotropic) tori, thereby yielding com-
plete integrability of the associated classical mechanical system (Section 3). The ensuing
action-angle variables receive a natural interpretation, the former being, in particular, tran-
sition probabilities. This has been already shown in greater generality[16] using different
techniques. Actually, the above theorem (in finite dimensions) can be also regarded as a con-
sequence of a much more general result by Thimm[42] stating thatU(n)- or O(n)-invariant
Hamiltonian systems on symmetric spaces are completely integrable; furthermore, projec-
tive spaces provide the basic examples of Hamiltonian toric manifolds (see e.g.[5,21]or the
textbooks[6,23,30]; also, for recent developments[34,35]). However, for the sake of defi-
niteness, we give fully explicit arguments. In this way we possibly establish a link among
different research strands.

Various implications of integrability—which do not seem to have been previously
analyzed—are discussed in the subsequent sections.

First of all, it is natural to look anew at quantum adiabaticity and at the emergence
of Berry’s phase[7,39]: in view of classical complete integrability we can interpret this
problem both quantum mechanically[7] and classical mechanically[24,32], showing com-
patibility of the two pictures (Section 4). Moreover it is interesting, in view of the statistical
interpretation of quantum mechanics, to compute the partition function of the classical
canonical ensemble explicitly (cf.[10–12]). This can be immediately achieved by resorting
to the Duistermaat–Heckman formula[6,17,23,30]exploiting the toral action (Section 5;
we sketch a direct elementary computation as well). In accordance with the suggestion of
[10–12], we find that the partition function indeed differs from the standard quantum me-
chanical one by certain weights depending on the energy level spacings and reflecting the
topological structure of the projective space as aCW-complex.

Furthermore (Section 6), we give a geometric interpretation of some aspects of the theory
of quantum measurement (see e.g.[19,43]for recent surveys) in the version developed, e.g.
in [9] (we stress the fact that we act within orthodox quantum mechanics). The passage
from a pure state to a mixture after interaction with a measuring apparatus can be described
in “classical” terms as averaging over the (“fast”) angle variables; one gets, as a by-product,
a version of the averaging theorem (time averaging= angle averaging,[3]). The collapse
of the wave function can also be described (though by no means “explained away”) by
resorting to basic geometric invariant theory[22,33], by letting unitarity (but not linearity)
be violated during the measurement process. The latter can be “visualized” geometrically in
terms of a natural polytope (parametrizing toral orbits) emerging from convexity properties
of the relevant moment map (cf.[5,6,21–23,30]).

Then, inSection 7, we show that second quantization can be realized via Bohr–Sommerfeld
quantization (also cf.[4,38]). The final section summarizes our conclusions.

2. Review of geometric quantum mechanics

In this section we mostly follow and improve the treatment given in[40] (but see also
[13–15,23]). Throughout the paper we assume ¯h = 1. LetV be a complex Hilbert space of
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finite dimensionn+1, for simplicity, with scalar product〈·|·〉, linear in the second variable.
LetP(V) denote its associated projective space, of complex dimensionn. This is the space of
(pure) states in quantum mechanics. Upon free employ of Dirac’s bracket notation, we can
identify a point inP(V), which is, by definition, the ray (i.e. one-dimensional vector space)
〈v〉 pertaining to (resp. generated by) a non-zero vectorv ≡ |v〉—and often conveniently
denoted by [v]—with the projection operator onto that line, namely

[v] = |v〉〈v|
‖v‖2

(2.1)

(actually, the above identification can be interpreted in terms of the moment map defined
below). For the sequel, we notice that, upon choosing an orthonormal basis(e0, e1, . . . , en)

of V , and setting, for aunit vectorv = ∑n
i=0 αiei, the above projection can be written as a

density matrix ([9,31], see alsoSection 6)

|v〉〈v| ↔ (ᾱiαj) (2.2)

(with
∑n

i=0 |αi|2 = 1). If U(V) denotes the unitary group pertaining toV , with Lie algebra
u(V), consisting of all skew-hermitian endomorphisms ofV—which we call observables,
with a slight abuse of language—then the projective spaceP(V) is a U(V)-homogeneous
Kähler manifold. The isotropy group (stabilizer) of a point [v] ∈ P(V) is isomorphic to
U(V ′) × U(1), with V ′ the orthogonal complement to〈v〉 in V , theU(1) part coming from
phase invariance: [eiαv] = [v]. Hence

P(V) ∼= U(V)

(U(V ′) × U(1))
∼= U(n + 1)

U(n) × U(1)
. (2.3)

The fundamental vector fieldA� associated toA ∈ u(V) reads (evaluated at [v] ∈ P(V),
‖v‖ = 1)

A�|[v] = |v〉〈Av| + |Av〉〈v|. (2.4)

In view of homogeneity, these vectors span the tangent space ofP(V) at each point. The
(action of the) complex structureJ reads, accordingly:

J |[v]A
�
[v] = |v〉〈iAv| + |iAv〉〈v|. (2.5)

Next we are going to write down the expression for the natural (i.e. Fubini-Study) met-
ric g and Kähler formω (recalling that, if Tr denotes the trace on End(V), then clearly
Tr(|v〉〈w|) = 〈w|v〉): they are essentially the real and imaginary part (respectively) of the
hermitian form〈dv|dv〉. Explicitly:

g[v](A
�|[v], B�|[v]) = Re{〈Av|Bv〉 + 〈v|Av〉〈v|Bv〉}, (2.6)

and

ω[v](A
�|[v], B�|[v]) = g[v](J |[v](A

�|[v], B�|[v]) = i
2〈v|[A, B]v〉. (2.7)

Actually, our discussion can be conveniently rephrased in terms of themoment map

µ : P(V) → u(V)∗ ∼= u(V), µ([v]) = −i|v〉〈v| (2.8)
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(the last isomorphism coming from the Killing–Cartan metric onu(V) given by(A, B) :=
−(1/2)Tr(AB), for A, B ∈ u(V)). The Hamiltonian algebra corresponding toµ consists,
accordingly, of the real smooth functions

µA([v]) = (µ, A) = i
2〈v|Av〉, A ∈ u(V), (2.9)

i.e., up to a constant, the mean values of the observables. It follows immediately thatω

emerges as the canonical Kirillov symplectic form pertaining toP(V) looked upon (viaµ)
as aU(V)-coadjoint orbit (see e.g.[23,30]). Clearly,A� becomes the Hamiltonian vector
field associated toA ∈ u(V), i.e. one has

dµA = iA�ω. (2.10)

The Poisson bracket{·, ·} defined byω is of course

{µA, µB} := ω(A�, B�) = µ[A,B] . (2.11)

We also notice, for further use, that forA, B ∈ u(V), one has

[A�, B�] = −[A, B]�, (2.12)

where the l.h.s. commutator refers to vector fields, the r.h.s. one is the Lie algebraic one.
The latter identity can be directly checked by evaluating both sides on a HamiltonianµC.

From this point of view we may characterize Fubini-Study Killing vector fields as the
infinitesimal generators of unitary one-parameter groups, i.e., with the Hamiltonian vector
fieldsA� (also cf.[13]).

We now wish to compute a (local) symplectic potentialθ for ω, i.e. a one-form such
that dθ = ω. The one-formθ cannot be global since a symplectic form on a compact
manifold cannot be exact: indeed, it generates the one-dimensional second cohomology
groupH2(P(V)) and gives rise to the first Chern class of the hyperplane section bundle
O(1), whose space of holomorphic sections is canonically (conjugate linear) isomorphic to
V (see alsoSection 7, and[20]).

A short computation involving(2.12)shows that we may take

θ = −i〈v|dv〉. (2.13)

Up to a constant,θ is just the canonical (Chern–Bott) connection form (with respect to a her-
mitian local frame) onO(1), governing the so-called Berry (or, rather Aharonov–Anandan)
phase ([1,2,7,20], see alsoSection 4). Geometrically, it just represents the infinitesimal
angle variation ofv (relative to the complex plane it generates) upon an infinitesimal
(norm-preserving) displacement. This will be crucial for the sequel.

3. Toral actions and integrability

Let us now start from a non-degenerate quantum Hamiltonian

H =
n∑

j=0

λjPj =
n∑

j=0

λj|ej〉〈ej|, (3.1)
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i.e. λi �= λj, if i �= j, and(ej) is an orthonormal basis of eigenvectors, withPj := |ej〉〈ej|
being the orthogonal projection operator onto the line〈ej〉. Without loss of generality we
assume 0= λ0 < λ1 < · · · < λn, so

H =
n∑

j=1

λjPj. (3.2)

The Schrödinger evolution is given by (recall that ¯h = 1)

∂

∂t
|v〉 = −iH |v〉, (3.3)

inducing its projective space version ([10–12,26], in which the spinor formalism is used):∣∣∣∣ ∂

∂t
v

〉
〈v| + |v〉

〈
∂

∂t
v

∣∣∣∣ = i|Hv〉〈v| − i|v〉〈Hv| (3.4)

(here‖v‖ = 1). Its mean value on a state [v] yields a “classical” Hamiltonianh on P(V);
with the above notations

h([v]) = 〈v|Hv〉
〈v|v〉 =

∑n
j=0 λj|αj|2∑n

j=0 |αj|2 =
n∑

j=1

λj|αj|2, (3.5)

the last equality holding for‖v‖ = 1, λ0 = 0. Comparison with(2.9)yields

h([v]) = µ(−2iH). (3.6)

The critical points ofh are given by the zeros of(−iH)� (symplectic gradient) or equivalently
J(−iH)� = H� (Riemannian gradient), and these, in turn correspond to the states [ej]
determined by the eigenvectorsej. This can be seen in various ways, for instance via the
immediately checked formula for the dispersion (variance) of an observableA ∈ u(V) in a
state [v], see e.g.[2,15,40]:

∆[v]A = ‖Av − 〈v|Av〉v‖ = ‖A
�
[v]‖FS :=

√
g[v](A

�
[v], A

�
[v]) = ‖J[v]A

�
[v]‖FS. (3.7)

The nature of the critical point [ej] can be ascertained via the formula (resorting to normal-
ized vectors and then to obviously defined real coordinates)

h([v]) = λj +
n∑

k=0

(λk − λj)|αk|2 = λj +
n∑

k=0

(λk − λj)(x2
k + y2

k), (3.8)

showing, in particular, thath is a perfect Morse function, i.e. the index of thejth critical
point, namely 2j, yield the Betti numberb2j(P(V)) = 1 (the odd ones vanish).

Now let v = ∑n
j=0 αjej, with αj �= 0 for all j = 0, . . . , n. The submanifold consisting

of such [v]’s is open and dense inP(V). The torusTn+1 acts onP(V) via the position
ej �→ eiβj ej, βj ∈ [0, 2π), but actually, in view of global phase arbitrariness this action
descends to an effective action ofG := Tn: this is clearly seen in the density matrix
formalism

(ᾱiαj) �→ (ᾱiαj ei(βj−βi)) (3.9)



234 A. Benvegn`u et al. / Journal of Geometry and Physics 51 (2004) 229–243

(we shall resume this particular formalism inSection 6). We setβ0 = 0 in order to be
specific. The generators of the torus action are the (mutually commuting) operators iPj,
j = 1, 2, . . . , n. Their associated Hamiltonianspj := 〈·|Pj·〉 = µ(−2iPj) give rise ton

constants of motion (first integrals) in involution, with respect to the Poisson bracket(2.12)
defined by the Fubini-Study form, which turn out to be the action variables (see below). In
the complement we have a stratification of toral orbits of dimensionsk = 0, 1, . . . , n − 1
(isotropic tori), but the basic picture persists. Precisely, we may state the following theorem.

Theorem 3.1.

(i) Under the above assumptions, the “classical” Hamiltonian system(P(V), ω, h) (ac-
tually an open dense set thereof) is completely integrable. The Lagrangian tori are
provided by the orbitsG · [v] of the n-dimensional torus G-action above. The action
variablesIj coincide with the transition probabilities|αj|2 = pj([v]), j = 1, 2, . . . , n.

(ii) Indeed, the full system remains integrable, allowing isotropic tori, and the orbit space
can be identified with the standard n-symplex in the Euclidean spaceRn.

Proof. Ad (i). We compute the action variablesIj, j = 1, 2, . . . , n in the standard fashion
[3].

If ϑ is a (local) potential of the symplectic form, they read, upon choosing a homology
basis(γj) for a fixed Lagrangian torus

Ij = 1

2π

∫
γj

ϑ. (3.10)

In our case, considering a generic orbitG · [v] (which is topologically ann-dimensional
torus itself and it is clearly Lagrangian, sinceω|G·[v] ≡ 0) we may take asγj the curves

[0, 2π) � βj �→

∑

h�=j

αheh + αj eiβj ej


 ∈ P(V) (3.11)

and, recalling(2.13), we easily get

Ij = 1

2π

∫ 2π

0
|αj|2(−i〈eiβj ej|d eiβj ej〉) = |αj|2. (3.12)

The Schrödinger evolution reads, in coordinates (taking as beforeλ0 = 0):

v =
n∑

i=0

αiei �→
n∑

i=0

αi e−iλitei = α0e0 +
n∑

i=1

αi e−iλitei, (3.13)

and induces an obvious evolution on the torusG · [v].
Ad (ii). The action variablesIj, j = 1, 2, . . . , are globally defined, and collectively they

give rise to the convex polytope (inRn)

0 ≤
n∑

j=1

Ij = 1 − |α0|2 ≤ 1, (3.14)
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which is actually the standardn-symplex∆n in Rn. Thus, the orbit space is just∆n, the
singulark-toral orbits, 0≤ k < n corresponding to itsk-faces. �

Remarks.

1. As we have already pointed out, this result is known in different guises, though possibly
not so directly (cf.[5,16,21,23,30]). This concerns, in particular, the identification of
action variables with transition probabilities, which is important for the sequel.

2. The geometry of the energy surfaces alone is quite intricate[12]; in the latter paper it has
been observed that Schrödinger evolution takes place on a torus, but apparently there is
no mention of integrability.

4. Berry and Hannay angles

In this section we wish to reinterpret the emergence of Berry’s geometric phase[7,8,39]
after cyclic adiabatic perturbations of the Hamiltonian within the classical interpretation
of the quantum mechanical formalism outlined in the previous section. In an adiabatic
evolution of a non-degenerate HamiltonianH = H(R) depending on a pointR ∈ R
(parameter space, of dimension≥ 2) eigenvectors evolve into eigenvectors (see e.g.[9,31]
and particularly[39] for a careful discussion of the “quantum adiabatic theorem”) and, if
the evolution is also cyclic, a final eigenvector differs from the initial one by a phase factor
(Berry’s phase), which can be ascribed to parallel transport via the Chern–Bott connection
onO(1) (cf. Section 2). In what follows we shall neglect the so-called dynamical phase.
Explicitly, if C : [0, T ] → R denotes a closed oriented circuit in the parameter space

ej(C(T)) = ei
∫

C −i〈ej(R)|dRej(R)〉 · ej(C(0)) =: ei0ϑB
j · ej(C(0)) (4.1)

since, again by the very definition of the Chern–Bott connection, the infinitesimal angle
variation, say dϑj, of ej(R) in the complex plane inV it determines is−i〈ej(R)|dRej(R)〉
(the differential being now taken with respect to the parameter spaceR, pulling back
everything fromP(V) toR). We have tacitly assumed that in our evolutione0(C(t)) ≡ e0
for all t ∈ [0, T ].

Now, the adiabatic perturbation induces amigrationof the Lagrangian tori (and isotropic
ones) pertaining to the quantum system, happening on the trivial fibrationR× P(V) → R:
but this is exactly the framework leading to the appearance of Hannay’s angles[24,32]; the
migration is governed by Montgomery’s connection (given by averaging over tori[32]). We
wish to show that the two pictures are compatible: upon computing the relevant Hannay’s
angles0ϑH

j , we shall recover Berry’s phases0ϑB
j .

Theorem 4.1. With the above notations, we have

0ϑH
j = 0ϑB

j , j = 1, 2, . . . , n. (4.2)

Proof. Averaging dϑj over the torusG, with respect to its normalized Haar measure dg,
leaves it unaltered:〈dϑj〉G = dϑj by virtue of its geometric significance. The full Hannay
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angle0ϑH
j is obtained by integrating along the closed oriented circuitC in the parameter

space, yielding

0ϑH
j =

∫
C

(−i〈ej(R)|dRej(R)〉) = 0ϑB
j , j = 1, 2, . . . , n. � (4.3)

The geometric phase phenomenon can be synthetically described via the density ma-
trix formalism (cf.Eq. (3.9)). The off-diagonal (interference) terms have been detected in
specific experiments.

Remark. Note that inTheorem 4.1we looked upon the same (quantum) system in two
different ways. This is different from Berry’s analysis describing the relationship between
his and Hannay’s angles via a semiclassical analysis of an integrable system[8].

5. The partition function

In classical statistical mechanics it is natural to consider, among others, the canonical en-
semble partition function pertaining to a classical Hamiltonian system. This is particularly
relevant in our case in view of the statistical interpretation of quantum mechanics; so in this
section we are going to compute the canonical ensemble partition functionZ = Z(β) as-
sociated to the Hamiltonian system(P(V), ω, h) explicitly, slightly improving some results
of [10–12]. Recall that

Z(β) =
∫

P(V)

e−βh([v]) 1

n!
ωn, (5.1)

whereβ ∈ R (actually, the formula holds forβ complex, after suitable interpretation), and
ω is, in this section,one-halfof the previous one, in order to comply with the convention
adopted in[30]. This particular issue has been addressed in[10–12], but apparently they give
no explicit formulae (except forn = 1 in a slightly different context) in addition to quali-
tative remarks. So we resort to the Duistermaat–Heckman formula[17,22,30], concerning
exactness of the stationary phase approximation, and we also provide a (sketch of a) direct
calculation. This is possible in view of the toral invariance of the classical Hamiltonianh

(cf. formula(3.5)); proper handling of square roots eventually yields the following.

Theorem 5.1. The partition function Z pertaining toP(V) and to the G-invariant Hamil-
tonian h reads, explicitly

Z(β) =
(

π

β

)n n∑
j=0

wj e−βλj , (5.2)

where

wj =
∏
i�=j

(λi − λj)−1. (5.3)
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Sketch of proof. The proof is just a matter of tracing back the very definitions and ap-
propriate conventions (see e.g.[22,30]). Actually, it is also possible to give an elementary
computation, outlined below. We stick to the casen = 1 for simplicity, the general case being
dealt with similarly. First, realizeP(C) ∼= S2 ∼= S3/S1. Due to the manifestS1-invariance
of Z, it is enough to compute onS3 and then divide by 2π (notice that the area ofP(C)2 is
π). Now S3 is described by the standard embedding inR4, i.e. (obvious notation)

S3 = {(x0, y0, x1, y1)|x2
0 + y2

0 + x2
1 + y2

1 = 1}. (5.4)

The volume form dvolS3 reads (after suitable arrangement)

dvolS3 = (x0 dy0 − y0 dx0) ∧ dx1 ∧ dy1 + (x1 dy1 − y1 dx1) ∧ dx0 ∧ dy0. (5.5)

Passing to polar coordinates (in the appropriate planes:zj = 4j eiϑj ), the integral becomes
a sum of two contributions. In the first, we rewrite the exponential as−β[λ0+ (λ1−λ0)42

1],
and perform a similar trick for the second piece. Integrating over angles we are left with
simple4-integrals, which finally yield (partial cancellations occurring) the formula forZ

in this case.

We notice that, as a retrospective check, one gets limβ→0 r.h.s. = πn/n! = vol(P(V)).
So, following[12], we may assert that the canonical partition function differs from the

standard quantum mechanical one in that the presence of the weightswj encodes information
about energy level spacings, this being related to the Hessian of the Hamiltonian at critical
points, which, in turn, is related to the topology ofP(V) as aCW-complex via Morse theory.
Recall thatP(V) is made up of 2k-dimensional cells, one for eachk = 0, . . . , n, this being
also reflected by the (de Rham) cohomology algebra, which is generated by the Fubini-Study
form, whose various exterior products yield the appropriate Poincaré–Cartan invariants (see
e.g.[20]).

It has been advocated in[10,12]that this “classical” partition function is more natural than
the standard quantum mechanical one since it does not sticks to stationary states from the
outset. We have shown that nevertheless the latter naturally arise via Duistermaat–Heckman,
and this somehow reconciles the two perspectives.

6. On the quantum measurement problem

The quantum measurement problem is actually the most tantalizing problem concerning
the interpretation of quantum mechanics (we refer to[19,43]for a thorough discussion). In
this section just make some remarks aiming at reinterpreting (part of) the treatment of the
measurement problem given by Bohm in his (“orthodox”) book[9].

The upshot of his fairly detailed analysis (based on the Stern–Gerlach experiment and
generalizations thereof) is that upon measuring an observable, say the energyH , a super-
position of its eigenstates goes to a different superposition characterized byuncontrollable
(relative) phase shifts (in view of the Heisenberg Uncertainty Principle):∑

j

αjej →
∑

j

αj eiβj ej. (6.1)
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We take, for definiteness,αj �= 0 for all j, and, as before, we may arrange things so that
β0 = 0. We consider the Schrödinger–von Neumann quantum evolution as taking place on
the space of density matrices (mixed states), which may be identified, up to ani fact or, with
a submanifold ofu(V). More explicitly, let4 be a density matrix, i.e. a positive operator
(4 ≥ 0) onV with Tr 4 = 1. Its evolution is governed by von Neumann’s equation

∂4

∂t
= −i[H, 4] (6.2)

which, when applied to a pure state (cf.(2.2)), reproduces the (projective form of the)
Schrödingerequation (3.4); furthermore, in the notation ofSection 3, see also above, one
has4 = |v〉〈v| = (ᾱiαj).

Geometrically, the above equation says that the (undisturbed) evolution of a density
matrix takes place on aU(V)-coadjoint orbit (with the customary identification of adjoint
and coadjoint action via, e.g. the Killing metric onu(V) and up to ani factor), which is a
symplectic manifold. This picture can be naturally supplemented by aC∗-algebraic one:
indeed, the density matrices constitute precisely thestate spaceof the finite dimensional
C∗-algebraB(V) consisting of all linear operators on the finite dimensional spaceV (so they
are necessarily bounded), see e.g.[29]. This space is closed underconvexcombinations,
and this will be crucial for what follows.

Now, roughly speaking for the moment, the point is that, upon averaging over the phases
(i.e. over a (long) series of measurements), one gets a diagonal density matrixρ := (|αj|2δij )

giving rise to a statistical ensemble in which an assembly of equal systems is partitioned in
subsystems with energy valuesλj in proportions|αj|2. In view of the classical interpretation
of the quantum formalism outlined above, we can rephrase the preceding description by
saying that the measurement process gives rise to anadiabaticperturbation (since the action
variables, i.e. the transition probabilities, do not change); hence, as in perturbation theory
in classical mechanics, one averages over the “fast” (i.e. angle) variables, namely, over an
n-dimensional torus (since a global phase change yields nothing), this boiling down to the
mixed state above. More precisely, we may state the following kind ofaveraging theorem
(cf. [3]) (valid in the non-degenerate case), whose proof is straightforward.

Theorem 6.1. In terms of density matrices, the following formula holds

lim
T→+∞

1

T

∫ T

0
e−iHt · [(ᾱiαj)] dt =

∫
G

g · [(ᾱiαj)] dg = (|αj|2δij ) = ρ, (6.3)

where e−iHt denotes the standard Schrödinger evolution,g stands for the toral action(3.9),
whereas dg again denotes the normalized Haar measure on G. Notice that both integrals
make sense since they both represent generalized convex combinations of (pure) states, so
they still define density matrices.

This “phase wash-out” or “decoherence” (see e.g.[19,43]) can be described geometrically
by saying that the torus action determines a transition from the pure stateU(V)-coadjoint
orbit given byP(V) to the (mixed state) one labeled byρ. The Hamiltonian, clearly, does
not change.



A. Benvegn`u et al. / Journal of Geometry and Physics 51 (2004) 229–243 239

Next we would like to present a geometric description of the “collapse of the wave
function”, which should supplement the preceding mechanism, in terms of basic notions
from geometric invariant theory[21,33]. We begin with a brief digression in order to clarify
our perspective. Consideration of vector fieldsη� = Jξ�, with ξ� a fundamental vector field
associated to a Hamiltonian compact Lie groupG-action on a Kähler manifoldX (with Lie
algebrag) is customary in geometric invariant theory, whereby such an action is extended to
the complexificationGc, with Lie algebragc = g ⊕ ig. Of course, such an extended action
does not preserve the metric any longer. Under fairly general conditions (see[22]) one has
the identification between Marsden–Weinstein and Mumford quotients, respectively:

X0

G
∼= Xs

Gc (6.4)

with X0 = µ−1(0), Xs := Gc · X0 (the stable points in Mumford’s sense, see e.g.[21,23]).
In our case we haveX = P(V), G = Tn, g = iRn, Gc ∼= (C∗)n, gc = iRn ⊕ Rn,
µ([v]) = (I1, I2, . . . , In) (hereµ denotes the toral moment map naturally induced from
theu(V) one, cf.Sections 2 and 3, up to a scalar) and the above quotients are both reduced
to the point [e0]. The vertices of the polytope also correspond to the absolute minima ([e0])
and maxima ([ej], j = 1, 2, . . . , n) of the norm square of the toral moment mapµ. The
slightly asymmetrical role of the critical points [ej] just stems from our initial conventions.
The action of the complex torus is no longer unitary (it is indeed a Lie subgroup of the full
linear groupGL(V)).

In view of formulae(2.5) and (3.7)applied toPj (complexification of−iPj) we get the fol-
lowing geometric portrait: upon measurement of the energyH = ∑

j λj|ej〉〈ej| = ∑
j λjPj

(we always require non-degeneracy of the energy levels), the system undergoes a gradient
flow motion (with respect to the Fubini–Study metric) starting from an initial state [v] with
velocity fieldP

�
j , this of course with probabilityIj = |αj|2; the velocity diminishes by grad-

ual loss of uncertainty provided by the measurement until in the limitt → +∞, one gets
for the energy the exact valueλj, corresponding to the critical point [ej] of the Hamiltonian.

It is indeed easy to check that, under the evolution [v] �→ etPj · [v], one has, provided
αj �= 0

lim
t→+∞ etPj · [v] = [ej], (6.5)

yielding the desired collapse, or reduction, of the superposition [v] to the stationary state
[ej].

The (“dissipative”) process in question involves a violation of unitarity—this is mathe-
matically clear, as we have seen, and it is physically reasonable as well, since we discuss
the system evolution alone, neglecting both the measuring apparatus and the environment,
cf. [19]—but linearity is retained. Resorting to the geometric picture of the orbit space, we
may also say that the collapse of the wave function consists, geometrically, in a point in the
polytope being “forced”, via(6.5), onto one of its vertices, with probabilities given by its
Rn-coordinates. The origin corresponds to the critical point [e0]. Also, during the process,
adiabaticity (action invariance, i.e. probability conservation) is clearly destroyed.

We stress the fact that our geometric picture should be seen as a (possibly useful) descrip-
tion, not as a “realistic” explanation. On the other hand, various mechanisms of dissipation
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have been invoked in the physical literature (see[19] for a thorough up-to-date discussion)
in connection with the collapse of the wave function. Among these, the idea of relaxing
unitarity whilst keeping linearity is also present. Geometric invariant theory possibly makes
this mathematically natural.

7. Second quantization as Bohr–Sommerfeld quantization

In this section we discuss another implication of complete integrability. In[4,38] it
is observed that (geometric) quantization of a quantum mechanical system looked upon
classically yields its second quantization. We comment on this as follows: having realized
a (finite dimensional) quantum mechanical system as a classically completely integrable
system (with the Riemannian structure giving the extra “quantum” ingredient) formally
resembling a collection of classical harmonic oscillators (with a norm constraint)—this is
clear fromSection 3, but see also, e.g.[25]—we may wish to quantize it, for instance, via
Bohr–Sommerfeld quantization (ignoring the Maslov correction for the moment, see e.g.
[44]): we proceed as follows: first recall the formula for the classical Hamiltonianh (for
‖v‖ = 1 andλ0 = 0):

h([v]) = 〈v|Hv〉 =
n∑

j=1

λjIj. (7.1)

Now, Bohr–Sommerfeld quantization requires, in our case:

Ij = nj ∈ N, j = 1, 2, . . . , n, (7.2)

giving rise to the (non-negative) energy levels

H({nj}) =
n∑

j=1

λjnj. (7.3)

Taking into account the bounds 0≤ Ij ≤ 1, j = 1, 2, . . . , n, this is possible if and only
if nj = 0 for all j’s or nj = δjk for somek. That is we exactly recover the eigenstates and
energy level of the initial system (the vertices of the moment map polytope). This is the
simplest instance of a general result[45] establishing (equivariant, with respect to a toral
action) equivalence of Bohr–Sommerfeld and holomorphic quantization.

However, upon removing the above constraints we get precisely the (bosonic) second
quantization prescription (with thenj ’s becoming occupation numbers). Taking Maslov’s
correction into due account would yield the zero point energy contribution (cf.[21]), which
is discarded in the infinite dimensional situation. Hence, we summarize the preceding dis-
cussion by saying thatsecond quantization can be interpreted as a kind of Bohr–Sommerfeld
quantization of a quantum mechanical system looked upon classically.

Moreover one can, by resorting, e.g. to[18], realize the (bosonic) second quantization
scheme geometrically upon considering direct sums of tensor products of the hyperplane
section bundleO(1) on P(V) (whose holomorphic sections yield ann + 1-dimensional
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complex vector space=: Γ , cf. [20]) and defining the symmetric Fock spaceF as

F := ⊕∞
k=0Γ k (7.4)

(symmetric tensor product understood, and obviously takingΓ 0 = C).
Notice that the above holomorphic section realization of the quantum Hilbert space

is just a particular case of the coherent state formalism (in the geometric quantization
framework via the Borel–Weil theorem). Roughly speaking, it just describes the quantum
Hilbert space via probability amplitudes (|v〉 �→ 〈v| ≡ |w〉 �→ 〈v|w〉). Incidentally, this
would essentially yield compatibility between geometric quantization (applied toP(V))
and geometric quantum mechanics. The literature concerning these topics is enormous, so,
since we are not going to delve further into these problems, we just refer, particularly for
the geometric aspects to[36,37,44]and also to[40,41], and references therein.

8. Conclusions and outlook

Our geometric approach is basically finite dimensional. However, this is far from being
devoid of physical significance: indeed, one often works with a finite dimensional approx-
imation, namely in quantum chemistry (Hartree–Fock), see e.g.[22]; another important
example is provided by quantum computation, see e.g.[28]. The theory outlined above can
be extended partially to the infinite dimensional case with few modifications (see however
[16] as well, for a more general approach), providedH has a multiplicity-free semibounded
discrete spectrum. One has the action of an infinite dimensional torus (still compact) and an
infinite number of first integrals in involution. This is possibly thesimplestexample of an
infinite dimensional integrable system. The above condition clearly excludes fundamental
examples such as a free particle or unbound states of an electron. The Duistermaat–Heckman
approach a priori fails. However, one may hope for an extension ofTheorem 6.1. via the
measure theoretic techniques of[16].

The full implications of complete integrability are not clear to us at the moment. However,
it may possibly have nothing to do a priori withquantizationof classically integrable or
chaotic systems: in our treatment the quantum system and Hamiltonian are given, and they
do not necessarily come from a quantization procedure applied to some classical dynamical
system (in particular, we do not tackle the crucial and difficult problem of determining
or approximating the energy spectrum). Let us just observe, in passing, that the action of
the “Bohmian” tori we have been considering throughout the paper destroys coherence of
the wave function, so, in principle, they do not pull-back to tori on a, say, coherent state
manifold (coming from geometrically quantizing a classical dynamical system).

Also, a deeper geometrical insight may prove useful in further penetrating the “mysteries”
of the quantum measurement process and of quantum entanglement (see e.g.[12] for an
interesting geometrical approach to the latter).
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